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Abstract 

Application of the same pattern for linking neigh- 
bouring 4.82 two-dimensional nets as is found in the 
A1PO4-CJ2 and A1PO4-15 structures allows the enu- 
meration of eleven (4;2)-connected three-dimensional 
nets with a maximum unit-cell repeat of - 10 A. Net 
551 is polytypic with net 398 (the tetrahedral ana- 
logue of AIPO4-12). The (4;2)-connected nets related 
to AIPO4-15 (net 400) and A1PO4-CJ2 (net 725) have 
the highest symmetry of the present nets. Synthetic 
zeolite Linde J may have the latter framework top- 
ology. Nets 400 and 725 relax considerably upon 
lowering of the space group symmetry. Geometrical 
refinements indicate that the mixed-coordinated 
A1PO4-15 is more feasible than its (4;2)-connected 
relative (same space group symmetry); the feasible 
net 398 and the topologically simpler net 551 have 
not been observed so far. Geometrically optimized 
atomic coordinates are given for the most feasible 
nets obtained here. 

Introduction 

Tetrahedrally coordinated frameworks occur in zeo- 
litic materials used in ion exchange, catalysis and 
molecular sieving. Research is expanding into a 
wider range of scientific areas as new materials are 
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synthesized [particularly ultra-pore materials, e.g. 
Kresge, Leonowicz, Roth, Vartuli & Beck (1992)]. 
The Atlas of Zeolite Structure Types (Meier & Olson, 
1992) and Smith (1988) give references and structural 
information on most topologically distinct zeolite 
materials and their three-letter structure-type codes. 

The systematic enumeration of (4;2)-connec- 
ted three-dimensional (3D) nets is important for 
the characterization and classification of known 
framework structures as well as for the solution of as 
yet unknown phases. The notation describes four- 
connected nodes (e.g. silicon, aluminium, phospho- 
rus) bridged by two-connected atoms (e.g. oxygen). 
Omission of the two-connected atoms leaves a fully 
four-connected net. Some exploratory contributions 
in the field of theoretical enumeration have come 
from Wells (1977), Smith (1977, 1978), Alberti 
(1979), Smith & Bennett (1984), Smith & Dytrych 
(1986), Hawthorne & Smith (1988), Kokotailo, Fyfe, 
Gies & Cox (1989), Andries (1990) and O'Keeffe 
(1992). It is expected that, with the aid of modern 
computational techniques, more general approaches 
can be undertaken towards the systematic enu- 
meration of four-connected 3D nets. Four techniques 
for generating 3D net topologies are: (i) simulated 
annealing (Deem & Newsam, 1989); (ii) a combi- 
natorial method (Treacy, RoD & Rivin, 1992); (iii) 
application of stacking operators to two-dimensional 
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(2D) sheet structures (Akporiaye & Price, 1989); and 
(iv) model building. Structural relationships within 
some restricted groups of zeolitic materials (Ak- 
poriaye, 1989, 1992; van Koningsveld, 1992) may 
provide interesting hints in relation to their nucle- 
ation mechanism (Brunner, 1992). A general theory 
for the systematic enumeration of two-dimensional 
three-connected nets (Wood & Price, 1992) takes 
advantage of modern computational techniques that 
may also facilitate the calculation of complex geo- 
metrical properties such as ring statistics (Marians & 
Hobbs, 1990; Stixrude & Bukowinski, 1990; Goetzke 
& Klein, 1991). 

The enumeration of tetrahedrally coordinated 3D 
nets belonging to a particular structural group in 
which some members have already been observed 
may prove useful as a more profound study of what 
types of frameworks are most likely to be observed. 
For the investigation of the geometrical feasibility of 
3D nets, two approaches are possible: (i) distance- 
least-squares (DLS) refinement (Baerlocher, Hepp & 
Meier, 1977), which optimizes cell parameters and/or 
atomic coordinates under assumed space-group sym- 
metry, using prescribed values for local geometry 
parameters (first- and second-neighbour distances 
and angles that prove rather constant for this type of 
structure); (ii) calculation of the structural stability 
by quantum-mechanical ab initio or semi-empirical 
techniques or by minimization of the lattice energy 
during structure relaxation. 

Here, we use the DLS method in the study of 
tetrahedral nets related to A1PO4-CJ2 (Yu, Pang & 
Li, 1990), A1PO4-15 (Parise, 1984b; Pluth, Smith, 
Bennett & Cohen, 1984) and A1PO4-12 (Parise, 
1984a). None of these three materials is fully four- 
connected (besides four-coordinated phosphorus, 
they contain five- and/or six-coordinated aluminium) 
but they can easily be related to such a net. In 
addition, we investigate to what extent the DLS 
method might explain the occurrence of some 
materials as strictly (4;2)-connected while others 
deviate from this topochemically simplest pattern. 

Topologically, both the 3D nets present in AIPO4- 
C J2 and A1PO4-15 are based on the same three- 
connected 2D net (4.82, code 'fee', see below) as well 
as the same pattern according to which neighbouring 
'fee' nets are connected (see below). We derive the 
topologically distinct tetrahedral 3D nets that are 
obtained under these conditions, further imposing 
limits on the unit-cell dimensions. 

Enumeration 

Fig. l(a) represents the 4.82 three-connected 2D net 
(one-sided plane group: p4mm; denoted 'fee') occur- 
ring in 31 topologically distinct framework struc- 
tures. Four-connected 3D nets are generated by 

stacking parallel 2D nets and connecting vertices by 
assigning an up (U)- or down (D)-directed fourth 
branch. We restrict the enumeration to those U/D 
patterns that result in either of the two smallest 
rectangular 2D unit repeats (Fig. l a, dashed lines). 
The smallest unit repeat is - 7 . 2  x 7.2 A, (assuming 
an internodal bond distance of 3.2 A,); the other is 
- 1 0 . 2  x 10.2 A~ [7.2(21/2)]. These dimensions do not 
necessarily refer to the crystallographic unit repeats 
for specific U/D patterns (see below). The smallest 
unit repeat does not allow strict alternation of two 
chemically different atoms in vertex positions; the 
larger cell does. 

The pattern according to which neighbouring 'fee' 
nets are connected in the structures of A1PO4-CJ2 
and A1PO4-15 is given in projection in Fig. l(b). 
Parallel 2D nets (neighbouring nets are displaced 
parallel to each other) are indicated in bold full and 
dashed lines and thin lines represent the intersheet 
linkages between nodes of adjacent 2D nets (the 
direction of the intersheet bonds depends on the 
particular U/D pattern of the 4.82 net). The third 
unit-cell dimension is now fixed by assuming that 
alternating 2D nets are identical and project onto 
each other in Fig. l(b). We first derive all the U/D 
patterns that are allowed in the 'fee' net under the 
unit-cell restrictions set forth above; subsequently, 
we derive the 3D nets obtained by connecting 'fee' 
nets with the same U/D configuration, applying the 
inter-sheet linking pattern represented in Fig. l(b). 

Results 

Since no known framework structure is built up 
(entirely) from the 4.82 2D net with different U/D 
sequences in its four-rings (considering inverted 
sequences to be identical, e.g. UUUD and UDDD), 
we further assume that all four-membered rings have 
the same U/D sequence (UUUU, UUUD, UUDD or 
UDUD). Fig. 2 shows the 12 distinct patterns that 
can be used to generate 3D nets. Vertices marked 
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Fig. 1. (a) The three-connected 4.8 z ('fee') 2D net. (b) Schematic 
representation of the inter-sheet linking pattern used for the 
enumeration of 3D nets. Parallel 2D nets: bold full and dashed 
lines. Intersheet linkages (no distinction between oppositely 
oriented bonds): thin lines. 
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with a circle are oppositely oriented to unmarked 
ones. The first three patterns are the only possible 
choices with the smallest rectangular unit repeat. 
Table 1 gives geometric and crystallographic data for 
the patterns in Fig. 2. The third column in the table 
gives the node sequence in the eight-rings, as origin- 
ally introduced by Smith & Rinaldi (1962) (S and C 
designate nodes with the same and opposite orienta- 
tion, respectively, compared with the previous one in 
the cycle). Two-sided plane groups are given in 
column 4. Small letters distinguish the 2D lattice 
type from the 3D Bravais lattice type. For the unit- 
cell axes, the same conventions are used as in Inter- 
national Tables for Crystallography (1983). The axis 
perpendicular to the 2D net is labelled c; a and b are 
chosen arbitrarily, except for oblique unit cells where 
b is chosen as the unique axis. The fifth column in 
Table 1 gives the ratio of oppositely oriented nodes 
(NuD >-- 1). 

TO enumerate 3D nets, copies of the patterns in 
Fig. 2 were superimposed and all possible dis- 
placements and rotations applied. The 11 3D nets 
thus obtained are schematically represented in pro- 
jection in Fig. 3. Bold and thin lines are used for 
parallel 'fee' nets; inter-sheet linkages (dashed and 
full lines represent oppositely oriented bonds) are 
also represented by thin lines. Open and filled circles 
represent nodes with the same orientation in adjacent 
2D nets. 

Geometric and crystallographic data for these 3D 
nets (and net 398, see below) are given in Table 2. 
Entries are: (i) NaB (catalogue number); (ii) the topo- 
logically highest space group (and number); (iii) N2D 
(sequence number in Table 1 of the 2D pattern from 
which the net is obtained); (iv) Zc (number of tetra- 
hedral nodes in the crystallographic unit cell); (v)-(x) 
unit-cell parameters (obtained after DLS refinement, 
using the highest topological symmetry and an over- 
all T-O distance of 1.68 .~; weights associated with 
T-O, O-O and T-T  distances were set at 2.0, 1.0 and 
0.2, respectively; occasionally damping factors <1.0 

Table 1. Geometric and crystallographic data for the 
2D patterns in Fig. 2 

Sequence in Two-sided 
N2D Four-r ings eight-rings plane group* N v n  

1 UUDD SCCCSCCC cl 2/m 1 (12) 1 
- -  

2 UDUD SCSCSCSC p4m2 (115) I 
3 UUUD SSSCCSCC plml  (6) 3 
4 UUUU SCSCSCSC p4/nmm (129) 1 

DDDD 
5 UUDD SSSCSSSC pman (53) 1 
6 UUDD SSSCSSSC c 12/m 1 (12) 1 

SCCCSCCC 
7 UD UD CCCCCCCC p4/nbrn (125) 1 
8 UUUD SSSSSCSC cmm2 (35) 3 
9 UUUD SSSSCCCC pl al (7) 3 
10 UUUD SSCCCSSC cm2a (39) 1 

UDDD 
11 UUUD SCCSCSSC pl 2,1 (4) 1 

UDDD 
12 UUUD SCCCCCSC c 12/m I (12) 1 

UDDD 
* Number s  in parentheses are topologically highest 3D space 

group numbers  if no higher symmetry  were present. 

for atom and/or cell parameter shifts were used); (xi) 
circuit symbols (Wells, 1977); (xii) RDLS, the DLS 
geometrical agreement factor; (xiii) the topologically 
highest space group (and number) for strict T-atom 
alternation. Throughout, the monoclinic and ortho- 
rhombic space group settings used are those for 
b > a > c .  

The most important polyhedral units, one- 
dimensional (1D) units (chains, columns and tubes) 
and 2D planar nets (except the original 'fee' net used 
to generate the 3D nets) are listed in Table 3. Polyhe- 
dral units that are not part of 1D units in the third 
column of the table are shown in Fig. 4. One- 
dimensional units are represented in Fig. 5 and 2D 
planar nets in Fig. 6. The label identifying each 
structural unit is a mnemonic code from the lists at 
the Consortium for Theoretical Frameworks of 
structural units occurring in 3D nets of zeolites and 
related framework structures. Table 3 does not list 
polyhedral or 1D units that are part of others in the 
same 3D net (e.g. 'kah' is part of 'kre' in nets 391 

Fig. 2. The 12 two-sided planar pat terns with an up or  down direction assigned to each vertex (marked and unmarked ones are 
opposi tely oriented), restricted to the two smallest rectangular 2D unit cells in the 'fee' net. Numbers  are sequence numbers  in Table  1. 
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N3D 
389 

390 

391 

392 

393 

394 

398* 

400 

551 
725 
958 
959 

Table 2. Geometric and crystallographic data for the 3D nets & Fig. 3 and net 398 

H i g h e s t  Space  g r o u p  
space  g r o u p  NZD Z c a (A)  b (A) c (/~,) a (o) fl (o) y (o) Ci rcu i t  s y m b o l s  RDL s fo r  a l t e r n a t i o n  

P1121/b (14) 10 16 10.51 14.50 9.04 - - 136.65 (436281)1(42638')1 0.0067 P1121 (4) 
(426282), (416481)1 

Pnn2 (34) 10 16 8.76 11.05 7.14 - - - (4%2)1(426282)1 0.0151 Plal (7) 
(426282)1(426~83)1 

C211 (5) 3 16 9.82 10.47 9.43 89.92 - - (436281)~(426282)1 0.0051 P2~ 11 (4) 
(426282) 1(416283)1 

PI  (2) 3 8 7.29 9.04 7.25 82.18 90.75 115.51 (436z81),(436281)1 0.0066 PT (2) 
(436182)1(4%18')1 

P2/bll (13) 9 16 8.73 10.77 7.18 86.79 - - (4'62)1(4~6281)~ 0.0159 Pbll (7) 
(426381)j(416381101)l 

P2/bl 1 (13) 9 16 9.78 10.75 8.71 86.35 - - (4363)1(436281)1 0.0069 Pbl I (7) 
(4%481)1(416'101)1 

B112/m (12) 1 24 10.29 14.04 9.70 - - 98.65 (426%(426381)1 0.0058 P! 121/a (14) 
(41648'), 

Cmca (64) I I 32 10.96 15.34 9.80 . . . .  (436281),(4383)i 0.0084 Cmca (64) 
(426'83),(4284), 

C2/ml 1 (12) 1 16 9.73 10.11 8.96 90.72 - - (4%%(4J648'), 0.0034 P2Jbl I (14) 
/'4,212 (92) 11 16 9.32 9.32 10.88 - - - (426282)1(426282)1 0.0044 P212~21 (19) 
Pnnb (52) 7 16 8.69 10.88 7.87 - - - (4~6s)1(416481)~ 0.0168 P21nb (33) 
Pbnn (52) 5 16 8.54 11.29 6.631 - - - (436281)~(436281)1 0.0097 Pbn21 (33) 

* N e t  398 ( the  t e t r a h e d r a l  equ iva l en t  o f  A1PO4-12) is p o l y t y p i c  wi th  net  551. 
t D L S  r e f i nemen t  o f  net  959 w i t h o u t  s u p p l e m e n t a r y  res t r ic t ions  resul ts  in n o n b o n d e d  in te rshee t  T - T  dis tances  tha t  are  sma l l e r  t h a n  

b o n d e d  ones.  T h e  n o n b o n d e d  i n t e r p l a n a r  T - T  dis tance  was  the re fo re  c o n s t r a i n e d  a t  3.5 A. 

and 394 and 'fhe' is part of 'kek' in net 725). 
Underlined codes in column 4 of Table 3 denote 2D 
nets that stack onto each other to build up the entire 
3D net. The number in superscript in the same 
column is the number of crystallographic directions 
in which the 2D net occurs. Column 5 in Table 3 
indicates the occurrence of straight channels in some 
nets (nR: n-membered channel entrance ring; nD: 
dimensionality of the channel system). Table 4 is a 

compilation of geometric and crystallographic data 
for the structural units listed in Table 3. The face 
symbol lists all polygons bounding the polyhedral 
unit with the number in each symmetrically equiva- 
lent set in superscript. In the 1D rod group notation, 
a three (or higher)-fold symmetry chain axis is given 
first; in all other cases, the third axis symbol refers to 
the chain axis. R is the minimum number of connec- 
ting edges in the chain repeat and along the chain 

Fig. 3. T h e  11 3 D  nets.  N u m b e r s  a re  c a t a l o g u e  n u m b e r s  (Tab le  2). Para l le l  ' fee '  nets: bo ld  and  thin  lines. In t e r shee t  l inkages  (oppos i t e ly  
o r i en ted  bonds :  d a s h e d  a n d  full lines): thin lines. O p e n  a n d  filled circles r ep re sen t  equa l ly  o r i en ted  nodes  in ad j acen t  2 D  nets.  
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Table 3. Structural units (SU) and channels in the 3D 
nets 

Straight 
N3D SU3D SUID SU2D* channels 

400 krz, kjr z, fhe, kys, kyt fee, vvv 
551 vvs, lau, kzb apt, thr, ken, hex, fsy, fos 

keu, kew, kyy, 
kyz, kza 

725 krb kek, krc fee, fto* 
958 kah z, kbg hex, hex 2 
959 z, c 8R (1D) 
389 krb krc, krd fsv, hex, ffs, fto 2 
390 iet, kyx z fsv, ffs 2, vvv 2 
391 kre kbg, krc fs.._v, brw 2 8R (2D)t 
392 krl, kds z, krh, krk, fsv, brw, vvv 8R (2D)¢ 

krm, krn 
393 krt z, kru hex, fvo 2 10R (1D)~: 
394 kre, kre§ kbg, krd hex, ftn 2 10R (ID):~ 

* Underl ined codes are 2D nets that stack onto  each other  to 
build up the 3D net; the number  of  crystallographic directions in 
which the 2D net occurs is given by  superscripts. 

t Channel  system intersecting through eight-ring windows. 
:I: Highly elliptical ten-rings. 
§ Enant iomorphic  configuration. 

axis, N gives the number of nodes in the chain repeat 
and d represents the approximate chain-repeat dis- 
tance (in A). In the circuit symbols for 2D nets, the 
relative numbers of symmetrically non-equivalent 
nodes are given as subscripts. 

Discussion 

Net 389 is built from 1D units that are also found in 
other nets of this series ('krc' and 'krd'). The topo- 
logical symmetry is rather low and reducing the 
space group symmetry to that for alternation reduces 
the RDLS factor only slightly (0.0063). DLS 
refinements in the space group for alternation were 
done usin~ Si-O and A1-O bond distances of 1.63 
and 1.74 A, respectively, and the same weighting 
scheme as given above. 

Nets 390, 393 and 958 are not geometrically fea- 
sible (Table 2, RDLS > 0.015). Lowering the space 
group symmetry to that for alternation (or lower) 

kre kyx 
Fig. 4. Polyhedral  units not occurring in I D chains listed in 

column 3 of  Table  3. Two-connected  vertices are represented by 
dots  whose size shows view depth. 

Table 4. Geometric and crystallographic data for 
polyhedral units, 1D units and 2D nets in Table 3 

Crystal lographic 
Code  group 

Polyhedral  units 
Point  group 

kzc m 
krt 2 

krl T 
kre 2 
kzb 2/m 

vvs 21rn 
kyx mm2 

krb 2 

kdq mm2 
lau 4/mmrn 

kds mmrn 
k jr mmm 
iet 3m 

krz 2/m 

kaa mmm 

kah 62m 

Descript ion 

Face symbol  

414162618181 
424242426282 

424242426282 
42426261 
424264626282 

42426482 
42618210 I 

4262 

426282 
4264 

4282 
4284 
436 I 

444284 

6282 

63 

Two-dimensional  nets 
Plane group 

hex p6rnm 
ffs c2mm 

fos c2mrn 
fsy c2mm 
brw p2mm 
fsv p2mm 
vvv p2rnm 
fro p2mg 

ftn p2mm 

fro p2rnm 

Circuit symbols  

6 3 
(4210),(4. ! 02)2 

(4212),(4.122), 
(4.6.8),(628h 
(4.6.8)2(6.82)1 
(4210),(4.6.10)2(6. 102)j 
(4212),(4.8.12),(4.8.12)1 
(4.6.8), (4.82), (628), 

(4210)j(4.6.10)2(63)j(62.10)2 

(4214)2(4214)1(4.6.14)2(6.142), 

One-dimensional  units 
Rod  group R , N , d  

z pcmm 2, 2, 5 
krn p2/mll  3, 8, 7 

krh p/  3, 8, 7 
apt p2/ml I 3, 10, 7 

kyy pT 3, 10, 7 
krk pmmm 3, 14, 7.5 
fhe p4,22 4, 4, 9 

c pcmm 4, 4, 8.5 

kbg p'62rn 4, 8, 8.5 
kek p4,22 4, 12, 10 
thr pmmm 4, 12, 8.5 

kyz p2/mi I 4, 12, 8.5 
krc pl12, 4, 12, 8.5 

krd pl  4, 12, 8.5 
ken pcmrn 4, 16, 8.5 
kys p2/mll  4, 16, 10 
keu p2/ml I 4, 16, 9.5 
kew p2/m I 1 4, 16, 10 
kru p211 4, 16, 10.5 

krm pl  4, 16, 10 

kyt p /  4, 16, 10 
kza p2/mll  8, 32, 20 
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does not reduce the RDL S factor significantly. The 
unfeasibility of nets 390 and 393 may be attributed 
to the presence of a structural unit that is built from 
'iet' polyhedral units [this is the secondary building 
unit (Meier & Olson, 1992) with face symbol 4361 
and point group symmetry 3m] that in pairs share a 
common four-ring and are symmetry-related by a 
twofold rotation axis. In net 393, these polyhedral 
units are part of 'kru'  1D units that build dense 2D 
layers by sharing common four- and six-rings. 

Net 391 contains the 'krc' 1D unit, also found in 
nets 725 and 389. It is built from dense 2D layers, 
made up of edge-sharing 'kre' polyhedral units. In 
the space group for alternation, the RDL S factor is 
0.0048. 

Net 392 contains 'double open cubes' (see below; 
also found in net 400) that share edges in chain 'krh'. 
This chain contains a ladder-like I D unit and is 
related to the 'odc' chain (Smith, 1988) found in the 
mixed-coordinated GaPO4-14 framework (Parise, 
1985a) but has a smaller chain repeat. Net 392 is 
built from dense 2D layers, made up of 'krm' chains 

that share common four- and six-rings. The RDL s 
factor in the space group for alternation is 0.0061. 

Net 394 contains a ladder-like 1D unit and is 
related to net 391, being built from similar dense 2D 
layers. In net 394, these layers are built up with both 
the left and right enantiomers of the 'kre' polyhedral 
unit (edge sharing). The RDLS factor in the space 
group for alternation is 0.0063. Net 394 is the only 
geometrically feasible net obtained in this study with 
channels having an entrance ring larger than an 
8T-atom ring. 

Net 400 is the (4;2)-connected analogue of A1PO4- 
15 (Parise, 1984b; Pluth, Smith, Bennett & Cohen, 
1984). It is built entirely from 'kys' and 'kyt' 1D 
units. A polyhedral unit worth mentioning is the 
'double open cube' (not coded; built from two 'iet' 
polyhedral units that in pairs share a common four- 
ring and are symmetry related by an inversion 
centre), which is part of the 'kys' chain and occurs 
also in net 392. In net 400, these units share vertices. 
A description of AIPO4-15 and related net 400 is 
provided by Bennett, Dytrych, Pluth, Richardson & 

0 

3 2 

z krn krh apt kyy krk fhe c kbg 

kyz krc krd ken kys keu kew 

0 

kek thr 

kru krm kyt kza 

Fig. 5. One-dimensional chains, columns and tubes listed in Table 3. Two-connected vertices are represented by dots whose size shows 
view depth. The fractional height of nodes for helical units is obtained by dividing the displayed numbers by R (Table 4). 

hex ffs fos fsy brw 

fsv vvv fto ftn fvo 

Fig. 6. Two-dimensional three-connected nets listed in Table 3. Crystallographic (one-sided) 2D unit cells are represented by thin lines. 
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Table 5. Fractional atomic coordinates (x/y/z x 1000: top, four-connected; bottom, two-connected)for the most 
feasible nets in their topologically highest symmetry; unit-cell parameters are given in Table 2 

Net 389 Net  391 Net  392 Net  394 Net  398 Net  400 Net  551 Net  725 Net  959 

440/911 / 154 337/241/363 000/318/584 082/978/169 251 / 105/167 207/000/000 164/969/825 420/078/642 946/748/236 
120/589/154 663/219/341 276/227/861 106/249/312 001/222/167 000/136/117 165/693/649 409/437/629 053/000/245 
149/897/328 626/509/327 664/195/916 417/978/168 126/437/162 000/774/160 
851/602/199 340/507/178 956/163/195 410/251/188 250/885/250 

309/751/110 500/200/390 787/201/719 249/955/135 102/139/181 292/948/117 000/018/806 405/257/633 017/625/349 
322/920/267 320/359/244 204/350/712 061/105/269 078/328/229 123/074/084 217/000/000 533/020/532 014/750/000 
632/975/240 256/111/300 009/218/408 020/851/268 963/235/000 000/222/012 264/051/704 508/508/000 997/874/355 
500/000/000 265/286/516 000/500/500 000/000/000 288/093/000 000/172/279 174/806/789 502/241/369 750/737/250 
179/521/235 674/365/266 173/205/075 246/293/211 179/422/000 128/824/213 000/667/603 500/500/250 000/000/000 
000/500/000 712/104/228 193/042/787 143/250/500 000/500/156 250/750/500 250/007/250 
979/079/240 589/500/500 530/307/872 485/854/266 250/000/250 
945/749/265 489/563/238 835/266/078 500/000/000 364/188/241 
147/896/513 345/500/000 500/000/000 435/106/267 250/500/250 

447/250/000 

Smith (1986). In the highest space group for alter- 
nation, the RDLS factor is 0.0079. DLS refinement in 
the experimental space group of A1PO4-15 [P2~/bll 
(14)] results in an RDLS factor of 0.0065 with the 
assumption of T-atom alternation and 0.0027 with 
one overall T-O distance. This might indicate that 
the fully (4;2)-connected net 400 is geometrically 
feasible, with the assumption of a space group sym- 
metry considerably lower than the topologically 
highest symmetry. 

Net 551 is the most feasible new net. It is built up 
by an alternation of two types of 2D layers that 
share a common 'fee' net: the first, (i), consists of 
'kew' chains sharing six-rings; the second, (ii), is 
made up of 'thr' chains sharing opposite crankshaft 
chains ('c'). Together with the (4;2)-connected ana- 
logue of A1PO4-12 (Parise, 1984a) (catalogue no. 
398), net 551 belongs to a polytypic series of struc- 
tures built up by any sequence of (i) and (ii). The 
pure end members of this series are ABW (built from 
(i) only] and the (4;2)-connected net related to the 
metavariscite structure [built from (ii) only]. Net 398 
is related to net 551 by application of the same 
displacement vector to adjacent 'fee' nets, in contrast 
to the opposite displacement directions visualized in 
Fig. l(b). In terms of the 2D layer structures men- 
tioned above, net 398 has the sequence (i)-(i)-(ii). 
Polytypic materials are common among zeolites. 
When a stacking fault repeats in a regular pattern, a 
new material is obtained. For example, polytypism is 
very common in the ABC-6 group of zeolites and 
stacking disorder might also interrelate the structures 
of beryllonite and kaliophilite. The net 551 topology 
can otherwise be described as a space-filling arrange- 
ment of 'kza' ID units. Descriptions of A1PO4-12 
and related net 398 are given by Bennett, Dytrych, 
Pluth, Richardson & Smith (1986). In the highest 
space group for alternation, the RDLS factor for net 
551 is 0.0013. It is unclear why the simple net 551, as 
well as net 398 (highest space group for alternation 
RDLS = 0.0025), have not been observed so far. 

Net 725 is the (4;2)-connected net underlying the 
A1PO4-CJ2 structure (Yu, Pang & Li, 1990). Lower- 
ing the space group symmetry to that for alternation 
reduces the RDLS factor to 0.0029. Direct-methods 
analysis of powder X-ray diffraction data (Kirchner, 
1993) indicates that zeolite Linde J (Breck & Acara, 
1961) may be isotypic with net 725, consistent with 
298i and 27A1 nuclear-magnetic-resonance spectro- 
scopic data and the tetragonal symmetry (powder 
X-ray diffraction, consistent with P4~2~2) observed 
for NH4 + exchanged Linde J samples (Andries, 1989, 
unpublished). Structure refinement is in progress. 

Net 959 is built from 1D ladder-like units (made 
up of fused four-rings sharing opposite edges and 
found also in nets 392, 393 and 394) that are con- 
nected in a flexible way. Lowering the space group 
symmetry to that for alternation does not reduce the 
RDes factor considerably. 

DLS-refined atomic coordinates for nets 389, 391, 
392, 394, 398, 400, 551, 725 and 959 are given in 
Table 5. The top part of this table lists the tetra- 
hedral vertices, the bottom part gives two-connected 
(O) atom positions. 

Nets 400 and 725 are the two highest-symmetry 
nets obtained here and are geometrically feasible. 
Both, however, are built from the lowest-symmetry 
2D pattern in Table 1. As long as 3D space group 
determination is not computerized, this finding does 
not encourage the search for feasible high-symmetry 
3D nets using enumeration studies such as the one 
presented here. Nets 400 and 725 are not really 
ahead of the other feasible nets, with the exception of 
net 551, considering their RDLS factors in the topo- 
logically highest space group. In contrast, however, 
to the other feasible nets (389, 391,392 and 394 with 
a rather low topological symmetry), both nets relax 
considerably with lowering of the space group sym- 
metry. 

DLS refinements were applied to the observed 
mixed-coordinated structures of AIPO4-15 (Pluth, 
Smith, Bennett & Cohen, 1984) and AIPO4-CJ2 (Yu, 



324 3D NETS RELATED TO A1PO4-15, A1PO4-CJ2 AND A1PO4-12 

Pang & Li, 1990). In A1PO4-CJ2, aluminium is in 
trigonal bipyramidal (five two-conected oxygen 
neighbours, hereinafter denoted 0[2]) or in octahe- 
dral (five 0[2] and one F[1] ligand) coordination. In 
A1PO4-15, two types of octahedral aluminium are 
found: the first is coordinated with four 0[2] and two 
OH[3]; the second has four 0[2], one OH[3] and one 
H20[1] ligands. In both structures, A1-O-A1 bridges 
occur. We used averages of experimentally observed 
first- and second-neighbour distances where applica- 
ble (preserving the overall geometry of the alumin- 
ium coordination polyhedra). With weights of 2.0 
(P-O), 1.5 (A1-O and A1-F), 1.0 (O-O and O-F) and 
0.2 (A1-P and A1-A1), the resulting RDLS factors were 
0.0044 (A1POa-CJ2) and 0.0038 (A1PO4-15). In the 
latter case, one more distance constraint had to be 
introduced in order for the one-connected ligand not 
to move too close to framework O atoms (distance 
2.80; weight 0.5). The RDLS factor for A1POa-CJ2 is 
higher than for net 725; the one for A1PO4-15 is 
significantly lower than for net 400 (considering the 
same space group symmetry with T-atom alter- 
nation). 

Nets 400 and 725 are examples of high-symmetry 
3D nets built from low-symmetry 2D patterns with 
an intersheet linking pattern resulting in non- 
projecting 2D nets. It is expected that high-symmetry 
3D nets built from projecting 2D nets in general 
result from the connection of high-symmetry 2D 
patterns. By 'projecting', we mean that adjacent 2D 
nets have inverted U/D patterns whereby each node 
in the 2D net is connected to the same node above or 
below with an inverted orientation; 2D nets then 
project in the direction perpendicular to the planar 
net. Examples of such known framework structures, 
built from a 2D pattern in Table 1 (number in 
parentheses) are: ABW (5), GIS (5), paracelsian (1) 
and the (4;2)-connected analogue of metavariscite 
(4). Framework structures built from a 2D pattern in 
Table 1 in combination with a non-projecting inter- 
sheet linking pattern different from that in Fig l(b) 
are: feldspar (6), banalsite (7), YUG (6), MON (2) 
and the (4;2)-connected relatives of AIPO4-12 (1), 
variscite (1) and GaPO4-14 (8). 

Net 551 and other nets in the same polytypic series 
(see above) have a rather low topological symmetry 
(except the pure end members: topological symme- 
tries of ABW and the tetrahedral metavariscite-type 
net are Imam (74) and 14/mmm (139), respectively) 
but are geometrically very feasible. 

Concluding remarks 

Besides net 725, proposed to occur in Linde J, both 
the tetrahedral analogues of A1PO4-15 and A1PO4- 
12, as well as net 551, are possible candidates for real 
materials. It would be interesting to investigate the 

behaviours of the mixed-coordinated materials upon 
heating. As observed for AIPOn-53B (Andries, Pluth, 
Smith, Kirchner & Wilson, 1994) and the calcined 
form of MCS-1 (Simmen, 1992), both isotypic with 
the (4;2)-connected analogue of A1POa-EN3 (Parise, 
1985b), a transition to a fully (4;2)-connected 
material might be observed during dehydration 
(depending on the synthesis conditions). 

In relation to net 400, the present results indicate 
that the mixed-coordinated observed structure is 
favoured over its (4;2)-connected relative for the 
same space group symmetry. As mentioned above, 
comparative theoretical calculations of the structural 
stabilities of fully (4;2)-connected nets and their 
observed mixed-coordinated analogues could reveal 
interesting details. 
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Abstract 

Formulas for estimating quartet invariants depend 
on prior information on triplet invariants. If  this 
coincides with the Cochran estimate then the 
classical quartet formulas [Hauptman (1975). Acta 
Cryst. A31,680-687; Giacovazzo (1976). Acta Cryst. 
A32, 91-99, 100-104] are obtained. A mathematical 
theory is described that improves quartet estimates 
by exploiting some prior information on triplets. 
Special emphasis is devoted to the prior estimate of 
triplet invariants provided by the P~0 formula. 

Symbols 

N = number of atoms in the primitive unit cell. For 
unequal-atom structures, N is replaced in the 
formulas by Neq----0-3/0-32, where 0-; = y N= ~Zj. Z/ is 
the atomic number of the j th atom. 

Eh=RheXp(iq~h), normalized structure factor of 
index h. 

e i = R ~ - I  
q~= ~oh + q~k + ~Oi + q~m, with h + k + 1 + m = O. 
El  = Eh, E2 = Ek, E3 = El, E4 = Em, E5 = Eh + k, E6 = 

E h + i ,  E7 "- Ek  + ! 

© 1994 International Union of Crystallography 
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Gijp = 2RiRjRp/N 1/2 
Gijpq = 2RiRjRpRq/ N 
D~(x) = I~(x)/Io(x)= ratio of modified Bessel func- 

tions of orders one and zero, respectively. 

Introduction 

In some recent papers (Giacovazzo, Burla & 
Cascarano, 1992; Burla, Cascarano & Giacovazzo, 
1992; Altomare, Burla, Cascarano, Giacovazzo & 
Guagliardi, 1993) new attention has been devoted to 
the practical role of the quartet invariants in direct 
phasing procedures. A practical recipe was provided: 
the combined active use of positive estimated 
quartets and of triplets is not advised. The first 
reason for this is the well known correlation between 
positive quartets and positive triplets. The second is 
the lower accuracy of quartet estimates, which is very 
remarkable when triplets are estimated via the P~o 
formula (Cascarano, Giacovazzo, Camalli, Spagna, 
Burla, Nunzi & Polidori, 1984). Since P~o estimates 
triplets via their second representation (Giacovazzo, 
1977), i.e. via the special quintets 

05 = ~)h "~- ~k  -- ~h + k "]- ~n -- ~n, (1) 
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